Теоретико-множественный смысл натурального числа и нуля

Сайт: Система дистанционного образования ОГБПОУ "Смоленский педагогический колледж"
Курс: Математика (ЕН.01)
Книга: Теоретико-множественный смысл натурального числа и нуля
Напечатано:: Гость
Дата: вторник, 16 Апрель 2024, 10:33

Описание

Материалы лекции оформить в тетради. Наличие конспекта по данной теме будет проверено на следующей паре.

1. Количественные натуральные числа. Счет

Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматике раскрывается порядковый смысл натурального числа. Но натуральные числа имеют и количественный смысл. Чтобы выяснить, как связаны между собой эти два смысла натурального числа, рас­смотрим такие понятия, как отрезок натурального ряда, конечное множество, счет, и другие.

Определение. Отрезком Nа натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а.

Используя запись множества, для элементов которого указано характеристическое свойство, можно записать, что Nа = {х | хN и  х  а}

Например, отрезок N7 - это множество натуральных чисел, не пре­восходящих числа 7, т. е. N7 = {1, 2, 3, 4, 5, 6, 7}.

Отметим два важных свойства отрезков натурального ряда.

1) Любой отрезок Nа содержит единицу. Это свойство вытекает из определения отрезка Nа.

2) Если число х содержится в отрезке Nа и х¹а, то и непосредственно следующее за ним число х +1 также содержится в Nа.

Определение. Множество А называется конечным, если оно равномощно некоторому отрезку Nа  натурального ряда.

Например, множество А вершин треугольника - конечное множество, так как оно равномощно отрезку N3 = {1, 2, 3}, т.е. А ~ N3.

Теорема. Всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда.

Доказательство этой теоремы мы опускаем.

Определение. Если непустое конечное множество А равномощно отрезку Nа, то натуральное число а называют числом элементов множества А и пишут п(А) = а.

Например, если А - множество вершин треугольника, то n (А) = 3. Из данного определения и теоремы получаем, что для любого непустого конечного множества А число а = n(А) единственное.

Определение. Установление взаимно однозначного соответствия между элементами непустого конечного множества А и отрезком натурального ряда называется счетом элементов множества А.

Так как всякое непустое конечное множество равномощно только одному отрезку натурального ряда, то число элементов, т.е. результат счета не зависит от того, в каком порядке будут пересчитываться элементы множества. Поэтому можно какому-либо элементу множества А поставить в соответствие число 1 и больше этот элемент не рассматривать. Затем какому-либо из оставшихся элементов сопоставить число 2 и больше его не рассматривать. Продолжая это построение, последнему оставшемуся элементу мы поставим в соответствие число а.

В процессе счета мы не только найдем число элементов множества А, но и упорядочим его: элемент, которому соответствует число 1, - первый; элемент, которому сопоставлено число 2, - второй, и т.д.

Таким образом, всякое натуральное число а можно рассматривать как характеристику численности некоторого конечного множества А. Натуральное число а имеет при этом количественный смысл.

2. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»

Как было установлено ранее, количественное натуральное число а получается в результате счета элементов конечного множества А: а = n(А). Это же число а может быть получено и при пересчете элементов другого множества, например, В. Но если а = n(В), то множества А и В равномощны, поскольку содержат поровну элементов.

Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом - двухэлементные и т.д. Множества одного класса различны по своей природе, но все они содержат одинаковое число элементов. И это число можно рассматривать как общее свойство класса конечных равномощных множеств.

Таким образом, с теоретико-множественной точки зрения, натуральное число - это общее свойство класса конечных равномощных множеств.

Так как каждый класс равномощных конечных множеств однозначно определяется выбором какого-нибудь его представителя, то о натуральном числе «три» можно сказать, что это общее свойство класса множеств, равномощных, например, множеству сторон треугольника, а о натуральном числе «четыре», что это общее свойство класса множеств, равномощных, например, множеству вершин квадрата.

Число «нуль» с теоретико-множественных позиций рассматривается как число элементов пустого множества: 0 = n().

Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:

1) как число элементов в множестве А, получаемое при счете, т.е. а = n(А), причем А ~ Nа;

2) как общее свойство класса конечных равномощных множеств. Установленная связь между конечными множествами и натураль­ными числами позволяет дать теоретико-множественное истолкование отношения «меньше».

В аксиоматической теории это отношение определено следующим образом: а < b  ( сN) а + с = b.

Если а < b, то это означает, что отрезок натурального ряда Nа является собственным подмножеством отрезка Nb, т.е. NаNb и NаNb. Справедливо и обратное утверждение: если Nа - собственное подмножество Nb, то а < b. Тем самым отношение «меньше» получает теоре­тико-множественное истолкование:     а<b в том и только в том случае, когда отрезок натурального ряда Nа является собственным подмножеством отрезка Nb:

а<b  NаNb и NаNb.

Так, справедливость неравенства 3<7 вытекает из того, что {1,2,3}  {1,2,3,4, 5, 6,7}.

Если воспользоваться терминологией, принятой в школьном курсе математики, то последнее определение отношения «меньше» можно сформулировать так: «Число а меньше числа b  тогда и только тогда, когда при счете число а называют раньше числа b».

Данная трактовка отношения «меньше» позволяет сравнивать числа, опираясь на знание их места в натуральном ряду. Однако сравнение чисел (особенно небольших) часто выполняют иначе, используя связь чисел с конечными множествами.

В общем виде рассмотренный подход к определению отношения «меньше» можно обосновать следующим образом: пусть а = n(А), b = n(В), и а < b. Тогда  А ~ Nа, В ~ Nb  и Nа Nb. Последнее отношение означает, что в множестве В можно выделить собственное подмноже­ство В1, равномощное множеству А:     а = n (А), b = n(В) и а < b  А ~ В1, где В1В, В1  В, В1 .

Свойства отношения «меньше» для натуральных чисел также получают теоретико-множественное истолкование: транзитивность и антисимметричность этого отношения связаны с тем, что транзитивно и антисимметрично отношение «быть подмножеством».

Теоретико-множественный смысл неравенства 0 < а, истинного для любого натурального числа а, связан с тем, что пустое множество является подмножеством отрезка Nа (или любого такого множества А, для которого а = n(А)).

Заметим, что приведенные трактовки отношения «меньше» основываются на понятии подмножества конечного множества. Так как в реальной жизни мы, как правило, имеем дело с конечными множествами, то наш опыт говорит о том, что и любое подмножество конечного множества - конечно. Однако с математической точки зрения этот факт нуждается в доказательстве.

Теорема. Любое непустое подмножество конечного множества конечно.

Доказательство этой теоремы мы опускаем. 

В связи с тем, что при определении числа, соответствующему множеству А, приходится прибегать к счету, а для этого нужен некоторый отрезок натурального ряда, то изучение математики в начальных классах начинается, как правило, с усвоения чисел первого десятка. Параллельно раскрывается смысл каждого из этих чисел, причем ко­личественное натуральное число часто рассматривается как общее свойство класса конечных равномощных множеств. Например, когда учащиеся изучают число «три», они рассматривают множества, содержащие три элемента: три кубика, три карандаша и др. Так происходит при изучении всех чисел первого десятка, но число элементов в множестве каждый раз определяется путем пересчета, т.е. количественный и порядковый смысл числа, а также его запись выступают в тесной взаимосвязи.

Сравнение чисел в начальном курсе математики осуществляется различными способами - оно основано на всех рассмотренных нами подходах к трактовке отношения «меньше».

3. Теоретико-множественный смысл суммы

Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В -  4 элемента и пересечение множеств А и В пусто, то число элементов в их объединении равно сумме 5+4.

Теорема. Пусть А и В — конечные множества, не имеющие общих элементов. Тогда их объединение тоже конечно, причем п(АÈВ)=п(А) +п(В).

C теоретико-множественных позиций сумма натуральных чисел а и b  представляет собой число элементов в объединении конечных непересекающихся множеств А и В таких, что а = п(А), b = п(В):

а + b  =  n(А) + n(В) = n В),  если А ∩ В = .

Выясним теперь, каков теоретико-множественный смысл равенства а+0=а. Если а = n(А), 0 = n(), то, согласно теореме, а + 0 = n(А) + n() = n(А  ). Но, как известно, А   = А, следовательно, n(А  ) = n(А), откуда а + 0 = а.

Взаимосвязь сложения целых неотрицательных чисел и объединения множеств позволяет обосновывать выбор действий при решении текстовых задач определенного вида. Выясним, например, почему следую­щая задача решается при помощи сложения: «Катя нашла 3 гриба, а Маша - 4. Сколько всего грибов нашли девочки?»

В задаче рассматриваются три множества: множество А грибов Кати, множество В грибов Маши и их объединение. Требуется узнать число элементов в этом объединении, а оно находится сложением. Так как п(А) = 3, n(В) = 4 и АВ=, то n(А  В) = 3 + 4. Сумма 3 + 4 - это математическая модель данной задачи. Вычислив значение этого выражения, получим ответ на вопрос задачи: 3+4=7. Следовательно, девочки нашли 7 грибов.

4. Теоретико-множественный смысл разности

Выясним, каков смысл разности таких чисел, если а = n(А), b = n(В).

Теорема. Пусть А - конечное множество и В - его собственное подмножество. Тогда множество А\В тоже конечно, причем выполняется равенство п(А\В) = n(А) -п(В).

Из рассмотренной теоремы следует, что с теоретико-множественных позиций разность натуральных чисел а и b представляет собой число элементов в дополнении множества В множества А, если а = n(А), b = n(В) и В⊂А:

а-b=n(А)-n(В)=n(А\В), если В ⊂ А.

Аналогичное истолкование получает вычитание нуля, а также вычитание а из а. Так как А\0 =А, А\А =0,то а-0=а и а-а=0.

Взаимосвязь вычитания чисел и вычитания множеств позволяет обосновать выбор действия при решении текстовых задач. Выясним, например, почему следующая задача решается при помощи вычитания: «У школы росло 7 деревьев, из них 4 березы, остальные липы. Сколько лип росло у школы?»

В задаче рассматриваются три множества: множество А всех деревьев; множество В берез, оно является подмножеством множества А; и множество С лип - оно представляет собой дополнение множества В до А. В задаче требуется найти число элементов в этом дополнении. Так как по условию n(А) = 7, n(В) = 4 и ВА, то n(С) = n(А\В) = = n(А) - n(В) = 7- 4. Разность 7 - 4 - это математическая модель данной задачи. Вычислив значение этого выражения, получим ответ на вопрос задачи: 7 - 4=3. Следовательно, у школы росло 3 липы.

С теоретико-множественной позиции можно рассмотреть и смысл отношений «больше на» и «меньше на».

В аксиоматической теории определение отношения «меньше на» («больше на») естественным образом вытекает из определения отношения «меньше». Действительно, из того, что а < b тогда и только тогда, когда существует такое натуральное число с, что а + с = b, имеем, что «а меньше b  на с» или «b  больше а на с».

Итак, с теоретико-множественной точки зрения «а меньше b  на с» (или «b больше а на с») означает, что если а = п (А), b = п(В), то в множест­ве В содержится столько элементов, сколько их в А, и еще с элементов.

Рассмотрим, например, такую задачу: «На столе 5 чашек, а ложек на 2 больше. Сколько на столе ложек?» Легко видеть, что она решается при помощи сложения. Почему?

В задаче речь идет о двух множествах: множестве чашек (А) и множестве ложек (В). Известно, что в первом множестве 5 элементов, т.е. n(А) = 5. Число элементов во втором множестве требуется найти при условии, что в нем на 2 элемента больше, чем в первом. Отношение «больше на 2» означает, что в множестве В элементов столько же, сколько их в А, и еще 2 элемента (См. рис.).

Применимо к тем множествам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, и еще 2. Используя правило подсчета элементов в объединении непересекающихся множеств, получаем: n(В) = n(В1) + n(В\В1) = 5+2. Так как 5 + 2 = 7, то получим ответ на вопрос задачи: на столе 7 ложек.

Рассмотрим еще одну задачу: «На столе 5 чашек, а ложек на 2 меньше. Сколько на столе ложек?» Выясним, почему она решается при помощи вычитания.

В задаче речь идет о двух множествах: множестве чашек (А) и мно­жестве ложек (В). Известно, что в первом множестве 5 элементов, т.е. n(А) = 5. Число элементов во втором множестве надо найти при условии, что в нем на 2 элемента меньше, чем в первом. Отношение «меньше на 2» означает, что в множестве В элементов столько же, сколько их в А, но без двух (См. рис.).

                       

Применимо к тем множествам, о которых идет речь в задаче, это означает, что ложек на столе столько же, сколько чашек, но без двух. Таким образом, n(В) = n(А1) = = n(А) - n(А \А1) = 5 - 2. Так как 5 - 2 = 3, то получим ответ на вопрос задачи: на столе 3 ложки.

5. Теоретико-множественный смысл произведения

Определение. Если а, b - целые неотрицательные числа, то произведением а · b  называется число, удовлетворяющее следующим условиям:

1) а · b =  , еслн b > 1;

2) а · b  = а, если b  = 1;

3) а ·  b  = 0, если b  = 0.

Случаю 1) этого определения можно дать теоретико-множественную трактовку. Если множества А1, А2, ..., Аb, имеют по а элементов каждое, причем никакие два из них не пересекаются, то их объединение А1  А2  ... Аb , содержит а · b элементов.

Таким образом, с теоретико-множественных позиций а · b (b > 1) представляет собой число элементов в объединении b  множеств, каждое из которых содержит по а элементов и никакие два из них не пересекаются.

а · b  =  п (А1  А2  ...  Аb) , если п (А1) = п (А2) = ... = п (Аb ) = а и А1, А2, ..., Аb попарно не пересекаются.

Взаимосвязь умножения натуральных чисел с объединением равночисленных попарно непересекающихся подмножеств позволяет обосновывать выбор действия умножения при решении текстовых задач.

Рассмотрим, например, такую задачу: «На одно пальто пришивают 4 пуговицы. Сколько пуговиц надо пришить на 3 таких пальто?» Выясним, почему она решается при помощи умножения.

В задаче речь идет о трех множествах, в каждом из которых 4 элемента. Требуется узнать число элементов в объединении этих трех множеств. Если    n(А1) = n(А2) = n(А3) = 4, то n(А1  А2  А3) = n(А1) + n (А2) +  n(А3) = 4 + 4 + 4 = 4 ·3. Произведение 4·3 является математической моделью данной задачи. Так как 4 ·3 = 12, то получаем ответ на вопрос: на 3 пальто надо пришить 12 пуговиц.

Можно дать другое теоретико-множественное истолкование произведения целых неотрицательных чисел. Оно связано с понятием декартова произведения множеств.

Теорема 5. Пусть А и В - конечные множества. Тогда их декартово произведение также является конечным множеством, причем выполняется равенство: п(А×В) = п(А) · п(В).

Из рассмотренной теоремы следует, что с теоретико-множествен­ной точки зрения произведение а × b целых неотрицательных чисел есть число элементов в декартовом произведении множеств А и В, таких, что п(А) = а, п(В) = b.

а · b = п(А) · п(В) = п(А × В ).

6. Теоретико-множественный смысл частного натуральных чисел

C теоретико-множественной точки зрения деление чисел оказывается связанным с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества и с его помощью решаются две задачи: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) и отыскание числа таких подмножеств (деление по содержанию).

Таким образом, если а = п(А) и множество А разбито на попарно непересекающиеся равночисленные подмножества и если:

  • b  - число элементов в каждом подмножестве, то частное а : b  - это число таких подмножеств;
  • b  — число подмножеств, то частное а : b  - это число элементов в каждом подмножестве.

Взаимосвязь деления натуральных чисел с разбиением конечных множеств на классы позволяет обосновывать выбор действия деления при решении задач, например, такого вида: «12 карандашей разложи­ли в 3 коробки поровну. Сколько карандашей в каждой коробке?»

В задаче рассматривается множество, в котором 12 элементов. Это множество разбивается на 3 равночисленных подмножества. Требуется узнать число элементов в каждом таком подмножестве. Это число, как установлено выше, можно найти при помощи деления - 12:3. Вы­числив значение этого выражения, получаем ответ на вопрос задачи - в каждой коробке по 4 карандаша.

Если дана задача: «В коробке 12 карандашей, их надо разложить в коробки, по 3 карандаша в каждую. Сколько коробок понадобится?», - то для решения выбор действия деления можно обосновать следующим образом. Множество из 12 элементов разбивается на подмножества, в каждом из которых по 3 элемента. Требуется узнать число таких подмножеств. Его можно найти при помощи деления - 12:3. Вычислив значение этого выражения, получаем ответ на вопрос зада­чи - понадобится 4 коробки.

С теоретико-множественной точки зрения можно рассмотреть и смысл отношений «больше в» и «меньше в», с которыми младшие школьники встречаются при решении текстовых задач.

Если же а = nА), b  = n(В) и известно, что «а меньше b  в с раз», то поскольку а < b, то в множестве В можно выделить собственное подмножество, равномощное множеству А, но так как а меньше b в с раз, то множество В можно разбить на с подмножеств, равномощных множеству.

Так как с - это число подмножеств в разбиении множества В, содержащего b  элементов, а в каждом подмножестве - а элементов, то с = b  : а.

Теоретико-множественным смыслом отношения «а больше (меньше) b в с раз» можно воспользоваться при обосновании выбора действий при решении задач. Рассмотрим, например, такую задачу: «На участке растут 3 ели, а берез      в 2 раза больше. Сколько берез растут на участке?»

В задаче речь идет о двух множествах: множестве елей (А) и множестве берез (В). Известно, что n (А) = 3 и что в множестве В элементов в 2 раза больше, чем в множестве А. Требуется найти число элементов в множестве В, т.е. n (В).

Так как в множестве В элементов в 2 раза больше, чем в множестве А, то множество В можно разбить на 2 подмножества, равномощных множеству А (См. рисунок). Поскольку в каждом из подмножеств содер­жится по 3 элемента, то всего в множестве В будет 3+3 или 3 × 2 элементов. Выполнив вычисления, получаем ответ на вопрос задачи: на участке растет 6 берез.